Fake news detection: A hybrid CNN-RNN based deep learning approach

Keywords: Deep learning, Fake news detection, Misinformation, Disinformation, Rumours, CNN-RNN


The explosion of social media allowed individuals to spread information without cost, with little investigation and fewer filters than before. This amplified the old problem of fake news, which became a major concern nowadays due to the negative impact it brings to the communities. In order to tackle the rise and spreading of fake news, automatic detection techniques have been researched building on artificial intelligence and machine learning. The recent achievements of deep learning techniques in complex natural language processing tasks, make them a promising solution for fake news detection too. This work proposes a novel hybrid deep learning model that combines convolutional and recurrent neural networks for fake news classification. The model was successfully validated on two fake news datasets (ISO and FA-KES), achieving detection results that are significantly better than other non-hybrid baseline methods. Further experiments on the generalization of the proposed model across different datasets, had promising results.

Why Palowise?

  • #1:Use the industry's top artificial intelligence to handle the heavy work for you and gain insights in minutes.
  • #2:Receive an alert if something major occurs near your customer.
  • #3:Identify the influencers, material, and messaging required to generate success in real-time.
  • #4:Manage cross-channel campaigns with multidisciplinary groups and infinite channels.
  • #5:Monitor engagement and sentiment to get valuable insights.
  • #6:Monitor trending topics of discussion among users.